
10/25/18	

1	

Coping with Security / Safety Tensions�
 �

in Low-End Embedded Devices

Gene Tsudik

CS Dept., UC Irvine

Joint work with: X. Carpent1, K. Eldefrawy2, N. Rattanavipanon1, A. Sadeghi3
1 – UC Irvine, 2 – SRI International, 3 – TU Darmstadt

1

Roadmap

• Overview of Remote Attestation (RA)

• Problem Statement

•  Conflict between security of RA and real-time operation

• Tentative mitigation measures

•  Periodic self-measurements

•  Interruptible RA with shuffled measurements

•  Interruptible RA with memory locking

• Conclusions & future work

2

10/25/18	

2	

Internet-of-Things (IoT) Gadgets

3

IoT-specific Attacks On:

• Sensing: Privacy

• Actuation: Security & Safety

• Either: DDoS Sourcing (aka Zombification)

4

10/25/18	

3	

Constraints for Simple IoT Devices:
large scale + low price

5

CPU Power

Battery

Memory Size

Hardware Cost

Hard to prevent malware from entry

Next best thing is to detect malware!

Plus, limited physical “real estate” and typically low security budget

Remote Attestation (RA)

§  A means of detecting malware presence on an untrusted remote device

§  A security service

§  A protocol

§  An architecture

All of the above…

•  RA typically realized as an interaction between:

•  Verifier: trusted entity

•  Prover: untrusted (potentially infected) remote device

•  Goal: learn current internal (sw/fw) state of prover

6

10/25/18	

4	

Typical (on-demand) RA

(1)
Challenge

(3)
Response

(4) Verify response

Verifier
 Prover

(2) Measure memory

7

RA Adversarial Model (DAC’16)

•  Remote adversary

•  Exploits vulnerabilities to inject malware

•  Local adversary

•  Controls communication channel(s)

•  Physical adversary

•  Non-Intrusive: side-channel attacks

•  Stealthy Intrusive: “read-only”

•  Intrusive: alters hardware

8

10/25/18	

5	

Landscape of RA Techniques

•  Purely Hardware-based

•  Dedicated hardware support, e.g., TPM, TrustZone, SGX

•  Overkill for simple or low-end IoT devices (cost and features)

•  Purely Software-based

•  Relies on precise timing measurements, e.g., SCUBA, VIPER, PIONEER

•  Unrealistic assumptions for IoT except peripheral/legacy devices

•  Hybrid

•  SW/HW co-design, e.g., SMART, TrustLite

•  Minimal hardware impact

•  Seems like good fit for low-end devices

9

Safe Execution

Code
Immutability

Uninterruptibility

Atomicity Exclusive
Access

No Leaks

Prover’s
Key Protection

Derivation of Secure + Minimal
RA properties [DATE’14]

10

10/25/18	

6	

Hybrid RA Techniques

•  SMART [NDSS’12]+[DATE’14]

•  First hybrid design of RA for low-end microcontrollers

•  TrustLite [EuroSys’14]

•  Supports secure interrupts

•  TyTan [DAC’15]

•  TrustLite with real-time functionality

•  Process being measured cannot interrupt

•  HYDRA [WiSec’17]

•  SMART implementation for medium-end devices (secure boot needed)

•  Formally verified seL4 microkernel guarantees security properties

•  Especially, isolation

•  VRASED [‘18]

•  First formally verified RA design

•  Based on a version of SMART

11

RA vs Safety-Critical Operation

on SMART-based MSP430 @ 8MHz

RA takes:

≈4.5 seconds

to measure 48KB of flash

on HYDRA-based ODROID @ 2GHz

RA takes:

≈7 seconds

to measure 1GB of RAM

RA can interfere with safety-critical operation!

So… can we make RA interruptible?

12

10/25/18	

7	

Whither Interruptible RA Execution?

• Susceptibility to transient malware

•  Interrupts and erases itself during attestation

•  Avoids detection, leaves no trace

• Self-relocating malware

•  Interrupts and moves itself around during attestation

•  Avoids detection, remains on Prover

• Temporal inconsistency?

•  Memory can change during attestation

•  Computed measurement (e.g., MAC, HASH-to-be-signed) might reflect

memory that never existed

•  Could be caused by malware or even benign software

•  An important issue beyond the RA context

13

TyTan: First Attempt

• Dynamically configurable execution-aware memory protection
unit (EA-MPU) enforces:

•  Access rules to prover’s attestation key

•  Immutability

• Real-time OS

•  Process can issue interrupt if it’s not being attested

•  Provides isolation between processes

• Problems:

•  What if Verifier wants to attest a safety-critical process?

•  OS might be buggy à OS compromise can violate isolation à malware

can move around during attestation

14

10/25/18	

8	

Atomic	&	Uninterrupted		
RA	Execution	

YES
	 NO	

Periodic	self-measurements:	
SeED	(WiSec’17)	&		
ERASMUS	(DATE’18)	

	

Memory	locking	(AsiaCCS’18)	
&	random-order	memory	

traversal	–	SMARM	(HOST’18)		
	

Solution Landscape

15

Memory Locking [AsiaCCS’18]

• Can we allow RA measurement process to be interruptible?

• While enforcing temporal consistency of measured memory

•  E.g., by locking memory segments = temporarily make them read-only

• Measurement (on prover) starts at time: tS and ends at time: tE

16

10/25/18	

9	

Memory Locking: All-Lock

• All memory is locked throughout attestation

• Consistency from tS to tE

17

tS t1 tE t5 t3 t2 t4
Timeline

Memory Locking: Dec-Lock

• All memory locked at the start

• A memory block is unlocked after it is measured

• Consistency at tS

18

Timeline
tS t1 tE t5 t3 t2 t4

10/25/18	

10	

Memory Locking: Inc-Lock

• All memory unlocked at the start

• A memory block is locked after it is measured

• Consistency at tE

19

Timeline
tS t1 tE t5 t3 t2 t4

Memory Locking: Feature summary

•  Attestation process can be interrupted at any time (@block granularity)

•  Memory gradually locked or unlocked during attestation

•  Guarantees temporal consistency

•  Detects transient and self-relocating malware

•  Requires hardware support to lock/unlock memory blocks

•  MMU (as in HYDRA)

•  Runtime-configurable MPU (as in TyTan)

•  Other approaches possible, e.g., inconsistency detection via dirty bits

20

10/25/18	

11	

Shuffled Measurements [HOST’18]

• Allows attestation process to be interrupted

• Memory traversed in unpredictable AND secret fashion

21

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

10/25/18	

12	

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

10/25/18	

13	

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

10/25/18	

14	

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

Shuffled Measurements

1

2

3

4

5

6

Permutation = {3, 2, 5, 6, 1, 4}

10/25/18	

15	

Shuffled Measurements [HOST’18]

•  Allow attestation to be interrupted @block granularity

•  Memory traversed in unpredictable AND secret fashion

•  One-time traversal permutation generated by PRF on input of:

Key, counter and/or clock, challenge

•  Permutation protected by:

•  Storing it in separate (secure) working memory à new feature

OR

•  Storing encrypt-then-mac of each permutation element in regular memory

•  For large number of blocks, 37% malware evasion rate (see paper)

•  Multiple independent measurements to reliably detect malware

29

Shuffled Measurements: Summary

• Attestation process can be interrupted

• Measures memory in random & secret order

•  Probabilistic detection of self-relocating malware

• Multiple measurements to ensure high detection rate

•  Extra overhead in attestation run-time

• Needs no additional hardware features (over basic RA)

•  Encrypt-then-mac each element in permutation

30

10/25/18	

16	

Self-Measurement

• Prover periodically measures own memory:

•  Current RA techniques work “on-demand”, i.e., based on Verifier’s explicit
request

BUT:

•  Prover knows best è can schedule measurements to avoid

interference with safety-critical tasks

• Attestation process remains uninterruptible

•  Two recent techniques:

•  SeED [WiSec’17]

•  ERASMUS [HOST’18]

31

Challenge

Measurement

Verifier Prover

Self-Measurements: On-demand RA

32

10/25/18	

17	

Self-Measurements: SeED [WiSec’17]

•  Idea: Prover measures itself and immediately sends result to
Verifier without any explicit request by the latter

• Unpredictable measurement schedule to protect against
transient malware

•  Requires secure real-time clock

33

Self-Measurements: SeED [WiSec’17]

Measurement at t1

Measurement at t2

Measurement at t3

Verifier Prover

34

10/25/18	

18	

Self-Measurements: ERASMUS [DATE’18]

• Similar to SeED, but:

Instead of sending one result to Verifier after each self-measurement:

•  Accumulates measurements locally

•  Sends all (or specified range) to Verifier upon request

• Still requires secure real-time clock to detect transient malware

35

Measurement Phase

Idx = % n

Circular buffer (with n entries)

Collection Phase

Verifier Prover

Last 4 measurements

Self-Measurements: ERASMUS [DATE’18]

36

10/25/18	

19	

Self-measurements: Feature summary

• No presence of Verifier

•  Suitable for unattended settings

• Unpredictable RA schedule

•  Detects transient malware

• Uninterruptible attestation

•  Detects self-relocating malware

• Additional hardware feature

•  Secure (i.e., reliable, read-only) real-time clock

37

Conclusions

• Tension between secure RA and safety-critical operation

• Surveyed RA techniques attempt to mitigate it by:

•  Memory locking + temporal consistency

•  Shuffled memory traversal

•  Self-measurements

•  Identified trade-offs between:

•  Malware detection

•  Temporal consistency guarantees

•  Run-time overhead

•  Hardware requirements
 38

10/25/18	

20	

Ongoing & Future Work

• Formal verification

• Swarm/group setting

• Extensions (actually, practical applications), e.g.:

•  Secure Reset, Erasure, SW/FW Update

39

\end{document}

% Comments?

% Questions?

40

10/25/18	

21	

MITIGATION

METHODS

Malware Types
Detected

Writable
Memory

Availability

Consistency

Guarantees

Interrupt-
ibility

Unattended
Setting

Extra HW
Require

Run-Time

Overhead

Self-
relocating

Transient

TyTan

[DAC’15]

Temporal
Consistency via

Memory Locking

[ASIACCS’18]

Shuffled
Measurements

SMARM

[HOST’18]

Self-measurements

SeED, ERASMUS

[WiSec’17,DATE’18]

41

