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Roadmap

• Overview of Remote Attestation (RA)


• Problem Statement

•  Conflict between security of RA and real-time operation


• Tentative mitigation measures

•  Periodic self-measurements

•  Interruptible RA with shuffled measurements

•  Interruptible RA with memory locking


• Conclusions & future work
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Internet-of-Things (IoT) Gadgets
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IoT-specific Attacks On:


• Sensing: Privacy


• Actuation: Security & Safety


• Either: DDoS Sourcing (aka Zombification)
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Constraints for Simple IoT Devices: 
large scale + low price
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CPU Power




Battery




Memory Size




Hardware Cost


Hard to prevent malware from entry

Next best thing is to detect malware!


Plus, limited physical “real estate” and typically low security budget


Remote Attestation (RA)

§  A means of detecting malware presence on an untrusted remote device

§  A security service

§  A protocol

§  An architecture

All of the above…


•  RA typically realized as an interaction between:


•  Verifier: trusted entity 


•  Prover: untrusted (potentially infected) remote device


•  Goal: learn current internal (sw/fw) state of prover
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Typical (on-demand) RA


(1) 
Challenge


(3) 
Response


(4) Verify response


Verifier
 Prover


(2) Measure memory
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RA Adversarial Model (DAC’16)


•  Remote adversary

•  Exploits vulnerabilities to inject malware


•  Local adversary

•  Controls communication channel(s)


•  Physical adversary

•  Non-Intrusive: side-channel attacks 

•  Stealthy Intrusive:  “read-only” 

•  Intrusive: alters hardware
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Landscape of RA Techniques


•  Purely Hardware-based

•  Dedicated hardware support, e.g., TPM, TrustZone, SGX

•  Overkill for simple or low-end IoT devices (cost and features)


•  Purely Software-based

•  Relies on precise timing measurements, e.g., SCUBA, VIPER, PIONEER

•  Unrealistic assumptions for IoT except peripheral/legacy devices


•  Hybrid

•  SW/HW co-design, e.g., SMART, TrustLite

•  Minimal hardware impact

•  Seems like good fit for low-end devices
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Safe Execution 

Code 
Immutability 

Uninterruptibility 

Atomicity Exclusive 
Access 

No Leaks 

Prover’s  
Key Protection 

Derivation of Secure + Minimal 
RA properties [DATE’14] 
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Hybrid RA Techniques

•  SMART [NDSS’12]+[DATE’14]


•  First hybrid design of RA for low-end microcontrollers

•  TrustLite [EuroSys’14]


•  Supports secure interrupts

•  TyTan [DAC’15]


•  TrustLite with real-time functionality

•  Process being measured cannot interrupt


•  HYDRA [WiSec’17]

•  SMART implementation for medium-end devices (secure boot needed)

•  Formally verified seL4 microkernel guarantees security properties


•  Especially, isolation


•  VRASED [‘18]

•  First formally verified RA design 

•  Based on a version of SMART


11


RA vs Safety-Critical Operation


on SMART-based MSP430 @ 8MHz

RA takes:


≈4.5 seconds 

to measure 48KB of flash


on HYDRA-based ODROID @ 2GHz

RA takes:


≈7 seconds 

to measure 1GB of RAM


RA can interfere with safety-critical operation!




So…  can we make RA interruptible?
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Whither Interruptible RA Execution?


• Susceptibility to transient malware

•  Interrupts and erases itself during attestation

•  Avoids detection, leaves no trace


• Self-relocating malware

•  Interrupts and moves itself around during attestation

•  Avoids detection, remains on Prover


• Temporal inconsistency?

•  Memory can change during attestation

•  Computed measurement (e.g., MAC, HASH-to-be-signed) might reflect 

memory that never existed 

•  Could be caused by malware or even benign software

•  An important issue beyond the RA context 
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TyTan: First Attempt


• Dynamically configurable execution-aware memory protection 
unit (EA-MPU) enforces:

•  Access rules to prover’s attestation key

•  Immutability


• Real-time OS

•  Process can issue interrupt if it’s not being attested

•  Provides isolation between processes


• Problems:

•  What if Verifier wants to attest a safety-critical process?

•  OS might be buggy à  OS compromise can violate isolation à malware 

can move around during attestation
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Atomic	&	Uninterrupted		
RA	Execution	

YES
	 NO	

Periodic	self-measurements:	
SeED	(WiSec’17)	&		
ERASMUS	(DATE’18)	

	

Memory	locking	(AsiaCCS’18)	
&	random-order	memory	

traversal	–	SMARM	(HOST’18)		
	

Solution Landscape
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Memory Locking [AsiaCCS’18]


• Can we allow RA measurement process to be interruptible?


• While enforcing temporal consistency of measured memory


•  E.g., by locking memory segments = temporarily make them read-only


• Measurement (on prover) starts at time: tS and ends at time: tE 
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Memory Locking: All-Lock


• All memory is locked throughout attestation

• Consistency from tS to tE 
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tS t1 tE t5 t3 t2 t4 
Timeline 

Memory Locking: Dec-Lock


• All memory locked at the start

• A memory block is unlocked after it is measured

• Consistency at tS 
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Timeline 
tS t1 tE t5 t3 t2 t4 



10/25/18	

10	

Memory Locking: Inc-Lock


• All memory unlocked at the start

• A memory block is locked after it is measured

• Consistency at tE 
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Timeline 
tS t1 tE t5 t3 t2 t4 

Memory Locking: Feature summary

•  Attestation process can be interrupted at any time (@block granularity)


•  Memory gradually locked or unlocked during attestation

•  Guarantees temporal consistency

•  Detects transient and self-relocating malware


•  Requires hardware support to lock/unlock memory blocks

•  MMU (as in HYDRA)

•  Runtime-configurable MPU (as in TyTan)


•  Other approaches possible, e.g., inconsistency detection via dirty bits
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Shuffled Measurements [HOST’18]


• Allows attestation process to be interrupted


• Memory traversed in unpredictable  AND secret fashion
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Shuffled Measurements
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Permutation = {3, 2, 5, 6, 1, 4} 
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Shuffled Measurements
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Shuffled Measurements
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Shuffled Measurements
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Shuffled Measurements [HOST’18]

•  Allow attestation to be interrupted @block granularity


•  Memory traversed in unpredictable AND secret fashion


•  One-time traversal permutation generated by PRF on input of: 


 
Key, counter and/or clock, challenge


•  Permutation protected by:

•  Storing it in separate (secure) working memory à new feature

OR

•  Storing encrypt-then-mac of each permutation element in regular memory


•  For large number of blocks, 37% malware evasion rate (see paper)

•  Multiple independent measurements to reliably detect malware
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Shuffled Measurements: Summary


• Attestation process can be interrupted

• Measures memory in random & secret order

•  Probabilistic detection of self-relocating malware


• Multiple measurements to ensure high detection rate

•  Extra overhead in attestation run-time


• Needs no additional hardware features (over basic RA)

•  Encrypt-then-mac each element in permutation
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Self-Measurement

• Prover periodically measures own memory:


•  Current RA techniques work “on-demand”, i.e., based on Verifier’s explicit 
request


BUT:

•  Prover knows best è can schedule measurements to avoid 

interference with safety-critical tasks


• Attestation process remains uninterruptible


•  Two recent techniques: 

•  SeED [WiSec’17]

•  ERASMUS [HOST’18]
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Challenge


Measurement


Verifier Prover 

Self-Measurements: On-demand RA
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Self-Measurements: SeED [WiSec’17]


•  Idea: Prover measures itself and immediately sends result to 
Verifier without any explicit request by the latter


• Unpredictable measurement schedule to protect against 
transient malware


•  Requires secure real-time clock
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Self-Measurements: SeED [WiSec’17]


Measurement at t1 

Measurement at t2  

Measurement at t3  

Verifier Prover 
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Self-Measurements: ERASMUS [DATE’18]


• Similar to SeED, but:



Instead of sending one result to Verifier after each self-measurement:

•  Accumulates measurements locally

•  Sends all (or specified range) to Verifier upon request


• Still requires secure real-time clock to detect transient malware
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Measurement Phase 

Idx =  % n 

Circular buffer (with n entries) 

Collection Phase 

Verifier Prover 

Last 4 measurements 

Self-Measurements: ERASMUS [DATE’18]
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Self-measurements: Feature summary


• No presence of Verifier

•  Suitable for unattended settings


• Unpredictable RA schedule

•  Detects transient malware


• Uninterruptible attestation

•  Detects self-relocating malware


• Additional hardware feature

•  Secure (i.e., reliable, read-only) real-time clock
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Conclusions

• Tension between secure RA and safety-critical operation


• Surveyed RA techniques attempt to mitigate it by:

•  Memory locking + temporal consistency

•  Shuffled memory traversal

•  Self-measurements


•  Identified trade-offs between:

•  Malware detection

•  Temporal consistency guarantees

•  Run-time overhead

•  Hardware requirements
 38
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Ongoing & Future Work


• Formal verification


• Swarm/group setting



• Extensions (actually, practical applications), e.g.:

•  Secure Reset, Erasure, SW/FW Update
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% Comments?

% Questions?
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MITIGATION

METHODS


Malware Types 
Detected


Writable 
Memory 

Availability


Consistency

Guarantees


Interrupt-
ibility


Unattended 
Setting


Extra HW 
Require


Run-Time

Overhead


Self-
relocating


Transient


TyTan

[DAC’15]


Temporal 
Consistency via 

Memory Locking

[ASIACCS’18]


Shuffled 
Measurements


SMARM

[HOST’18]


Self-measurements

SeED, ERASMUS


[WiSec’17,DATE’18]
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