

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• 

00100000
00100110
11100111
11101010

00100000
00100110
11100111
11101010

⊑

00100000
00100110
11100111
11101010

00100000
00100110
11100111
11101010

endorse

⊑

00100000
00100110
11100111
11101010

00100000
00100110
11100111
11101010

•

•

•

•

Core 1 Crypto

Engine
Core 2

O
n
-C

h
ip

 I
n

te
rc

o
n
n

e
c
t

Memory Controller
I/O

L1

L2 cache

L1

DRAM

DMA

tag tag

Peripheral

tag tag

tag

tag

tag

tag

tag

tag

RF RF

L3 access comes

with a TCID

DRAM Time Slots
Time

TC 0 TC 1 TC N

Turn

•

•

•

Safety Assurance of Cyber-Physical Systems

Through Secure and Verifiable Information Flow Control
PIs: G. Edward Suh, Mark Campbell, Andrew C. Myers (Cornell University)

• Problem: safety-critical CPS is turning into complex

networked systems vulnerable to remote attacks
– Internet connectivity + vulnerabilities in complex HW & SW

– Implementation attacks: exploit bugs in HW or SW

– Algorithmic attacks: tamper with inputs to control algorithms

• Objective: provable security assurance for safety-

critical operations of autonomous driving systems
– Focus on collision avoidance in self-driving cars

– Formal assurance for security guarantees

Objective

Segway Autonomous Driving Testbed

Technical Approach

• Today’s hardware is insufficient to protect safety-critical

CPS platforms
– No capability for fine-grained IFC across heterogeneous modules

– No protection against timing interference

– No formal security guarantee

• Redesign architecture for comprehensive and verifiable

“Integrity” protection assurance

• Formal assurance: security type system for Verilog
– Associate security labels with hardware signals

– Statically check hardware-level information flows

Verifiably Secure Hardware Control Algorithms and Safety Analysis

SW-Level Information Flow Control

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0] {L} index;

// Par(0) = L Par(1) = H

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} write_enable;

Security check in the type system guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when the label of an instruction is L, its execution time should

only be affected by L hardware state

Camera

GPS, IMU,

odometry

LIDAR /

RADAR

Passenger

infotainment

Autonomous driving system

Object detection

and tracking

Scene estimator
(state wrt lane, etc.)

Pose estimator

Tactical planner
(maneuver planning, etc.)

Behavioral layer
(navigation, situation awareness)

Map, Mission, etc.

Collision avoidance
(possible using prediction)

Operational layer
(path generation, control, etc.)

Vehicle

Untrusted Net

World

• Co-design hardware, software, and control algorithms

• Language-based Information Flow Control (IFC) for

formal security assurance
– Partition autonomous driving systems into multiple security levels

– Build hardware and software with provable full-system

information flow control (IFC) to ensure safety-critical operations

can only be affected by untrusted inputs after an explicit

endorsement

• Control algorithms to deal with untrusted information

and provide quantitative safety assurance
• Information-flow type systems enforce strong security

properties assuming trustworthy hardware
– Noninterference: No information flow from untrusted source to

trusted sinks

– Robust endorsement: trusted data influenced by untrusted data in

circumscribed ways

• Extend language-based information flow control to

handle integrity and availability on modern SoCs
– Prove the use of correct information flows

– Handle information flows through heterogeneous element

• Integrates all three components: HW, SW, control
– Segway robot with cameras, lidar, and IMU/GPS. Use for year-

round testing in controlled environments.

– FPGA-based hardware platform: ARM + custom RISC-V processor

– Software in Jif programming language

– Migrate to the Skynet autonomous driving vehicle in the future

• Develop collision avoidance algorithms to handle

untrusted inputs such as detailed maps, traffic info, etc.
– Strategy (1): sensor verification of map; preload key known

landmarks; verify landmarks while driving

– Strategy (2): verification of plan via sensors; develop plan with

untrusted map; build occupancy map via sensor data only in front

of car; verify plan will not cause collision

– Strategy (3): contingency planning; develop nominal plan with

untrusted map; develop a family of plans based on the potential of

untrusted data; optimize plan switching logic to provide collision

guarantees; utilize multiple sensors

• Probabilistic collision analysis of the integrated system
– Quantitative analysis of the safety–collision probability

– Investigate the tradeoff between collision probability and security

protection levels (timing guarantees, amount of information, size of

TCB, etc.)

MapData{U} map;
Location{T} destination;
Route{U} naviplan;
Path{T} pathplan;

// compute the navigation route using map
naviplan.genRoute(map, destination);

Waypoint{U} w = naviplan.nextWaypoint();

// check and endorse next step to high
// integrity if it checks out vs. sensor data
endorse(w, L to H) if (verifiedStep(w)) {

// generate a trusted vehicle path
pathplan.genPath(w, ...);

}

• Real-world attack example on Jeep [Miller & Valasek 2015]

– Head unit runs mainly on OMAP chip

– OMAP communicates w/ v850 chip for remote door unlock, etc.

• Vulnerability: software updates including v850

software are unsigned & performed via head unit

• IFC solution: ensures integrity of software updates

(e.g., explicit endorsement after verifying signatures)

Information Flow Control Example

OMAP v850
CAN bus

Head Unit (“Radio”)
Steering

Transmission

Brakes

Engine

...

untrusted trusted

Trusted components

Untrusted components

Path planner with

collision avoidance

High Integrity

Low Integrity

Other autonomous

driving functions

Untrusted network

⇒ Full stack of hardware + software satisfies strong

information flow security properties

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end
Security check

Basler camerasVelodyne HD LIDAR (64 lasers)

SICK 1D
LIDAR
(mounted
inside)

Ibeo LIDAR scanners (4 lasers)

SICK 1D

LIDAR

Unibrain camera

DELPHI

millimeter

wave

RADAR

DELPHI millimeter wave RADAR

Safety Assurance of Cyber-Physical Systems

Through Secure and Verifiable Information Flow Control
PIs: G. Edward Suh, Mark Campbell, Andrew C. Myers (Cornell University)

• Problem: safety-critical CPS is turning into complex

networked systems vulnerable to remote attacks
– Internet connectivity + vulnerabilities in complex HW & SW

– Implementation attacks: exploit bugs in HW or SW

– Algorithmic attacks: tamper with inputs to control algorithms

• Objective: provable security assurance for safety-

critical operations of autonomous driving systems
– Focus on collision avoidance in self-driving cars

– Formal assurance for security guarantees

Objective

Segway Autonomous Driving Testbed

Technical Approach

• Today’s hardware is insufficient to protect safety-critical

CPS platforms
– No capability for fine-grained IFC across heterogeneous modules

– No protection against timing interference

– No formal security guarantee

• Redesign architecture for comprehensive and verifiable

“Integrity” protection assurance

• Formal assurance: security type system for Verilog
– Associate security labels with hardware signals

– Statically check hardware-level information flows

Verifiably Secure Hardware Control Algorithms and Safety Analysis

SW-Level Information Flow Control

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0] {L} index;

// Par(0) = L Par(1) = H

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} write_enable;

Security check in the type system guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when the label of an instruction is L, its execution time should

only be affected by L hardware state

Camera

GPS, IMU,

odometry

LIDAR /

RADAR

Passenger

infotainment

Autonomous driving system

Object detection

and tracking

Scene estimator
(state wrt lane, etc.)

Pose estimator

Tactical planner
(maneuver planning, etc.)

Behavioral layer
(navigation, situation awareness)

Map, Mission, etc.

Collision avoidance
(possible using prediction)

Operational layer
(path generation, control, etc.)

Vehicle

Untrusted Net

World

• Co-design hardware, software, and control algorithms

• Language-based Information Flow Control (IFC) for

formal security assurance
– Partition autonomous driving systems into multiple security levels

– Build hardware and software with provable full-system

information flow control (IFC) to ensure safety-critical operations

can only be affected by untrusted inputs after an explicit

endorsement

• Control algorithms to deal with untrusted information

and provide quantitative safety assurance
• Information-flow type systems enforce strong security

properties assuming trustworthy hardware
– Noninterference: No information flow from untrusted source to

trusted sinks

– Robust endorsement: trusted data influenced by untrusted data in

circumscribed ways

• Extend language-based information flow control to

handle integrity and availability on modern SoCs
– Prove the use of correct information flows

– Handle information flows through heterogeneous element

• Integrates all three components: HW, SW, control
– Segway robot with cameras, lidar, and IMU/GPS. Use for year-

round testing in controlled environments.

– FPGA-based hardware platform: ARM + custom RISC-V processor

– Software in Jif programming language

– Migrate to the Skynet autonomous driving vehicle in the future

• Develop collision avoidance algorithms to handle

untrusted inputs such as detailed maps, traffic info, etc.
– Strategy (1): sensor verification of map; preload key known

landmarks; verify landmarks while driving

– Strategy (2): verification of plan via sensors; develop plan with

untrusted map; build occupancy map via sensor data only in front

of car; verify plan will not cause collision

– Strategy (3): contingency planning; develop nominal plan with

untrusted map; develop a family of plans based on the potential of

untrusted data; optimize plan switching logic to provide collision

guarantees; utilize multiple sensors

• Probabilistic collision analysis of the integrated system
– Quantitative analysis of the safety–collision probability

– Investigate the tradeoff between collision probability and security

protection levels (timing guarantees, amount of information, size of

TCB, etc.)

MapData{U} map;
Location{T} destination;
Route{U} naviplan;
Path{T} pathplan;

// compute the navigation route using map
naviplan.genRoute(map, destination);

Waypoint{U} w = naviplan.nextWaypoint();

// check and endorse next step to high
// integrity if it checks out vs. sensor data
endorse(w, L to H) if (verifiedStep(w)) {

// generate a trusted vehicle path
pathplan.genPath(w, ...);

}

• Real-world attack example on Jeep [Miller & Valasek 2015]

– Head unit runs mainly on OMAP chip

– OMAP communicates w/ v850 chip for remote door unlock, etc.

• Vulnerability: software updates including v850

software are unsigned & performed via head unit

• IFC solution: ensures integrity of software updates

(e.g., explicit endorsement after verifying signatures)

Information Flow Control Example

OMAP v850
CAN bus

Head Unit (“Radio”)
Steering

Transmission

Brakes

Engine

...

untrusted trusted

Trusted components

Untrusted components

Path planner with

collision avoidance

High Integrity

Low Integrity

Other autonomous

driving functions

Untrusted network

⇒ Full stack of hardware + software satisfies strong

information flow security properties

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end
Security check

Basler camerasVelodyne HD LIDAR (64 lasers)

SICK 1D
LIDAR
(mounted
inside)

Ibeo LIDAR scanners (4 lasers)

SICK 1D

LIDAR

Unibrain camera

DELPHI

millimeter

wave

RADAR

DELPHI millimeter wave RADAR

•

•

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}

•

•

•

•

•

