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Safety Assurance of Cyber-Physical Systems 

Through Secure and Verifiable Information Flow Control 
PIs: G. Edward Suh, Mark Campbell, Andrew C. Myers (Cornell University)

• Problem: safety-critical CPS is turning into complex 

networked systems vulnerable to remote attacks
– Internet connectivity + vulnerabilities in complex HW & SW

– Implementation attacks: exploit bugs in HW or SW

– Algorithmic attacks: tamper with inputs to control algorithms

• Objective: provable security assurance for safety-

critical operations of autonomous driving systems 
– Focus on collision avoidance in self-driving cars

– Formal assurance for security guarantees

Objective

Segway Autonomous Driving Testbed

Technical Approach

• Today’s hardware is insufficient to protect safety-critical 

CPS platforms 
– No capability for fine-grained IFC across heterogeneous modules

– No protection against timing interference

– No formal security guarantee 

• Redesign architecture for comprehensive and verifiable 

“Integrity” protection assurance

• Formal assurance: security type system for Verilog
– Associate security labels with hardware signals

– Statically check hardware-level information flows

Verifiably Secure Hardware Control Algorithms and Safety Analysis

SW-Level Information Flow Control

reg [18:0] {L} tag0[256];

reg [18:0] {H} tag1[256];

wire [7:0]  {L} index;

// Par(0) = L  Par(1) = H

wire {Par(way)} way;

wire [18:0] {Par(way)} tag_in;

wire {Par(way)} write_enable;

Security check in the type system guarantees:

- No explicit information flow from H to L

- No unintended timing channels: when the label of an instruction is L, its execution time should 

only be affected by L hardware state
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• Co-design hardware, software, and control algorithms

• Language-based Information Flow Control (IFC) for 

formal security assurance
– Partition autonomous driving systems into multiple security levels

– Build hardware and software with provable full-system 

information flow control (IFC) to ensure safety-critical operations 

can only be affected by untrusted inputs after an explicit 

endorsement

• Control algorithms to deal with untrusted information 

and provide quantitative safety assurance
• Information-flow type systems enforce strong security 

properties assuming trustworthy hardware
– Noninterference: No information flow from untrusted source to 

trusted sinks

– Robust endorsement: trusted data influenced by untrusted data in 

circumscribed ways

• Extend language-based information flow control to 

handle integrity and availability on modern SoCs
– Prove the use of correct information flows

– Handle information flows through heterogeneous element

• Integrates all three components: HW, SW, control
– Segway robot with cameras, lidar, and IMU/GPS. Use for year-

round testing in controlled environments. 

– FPGA-based hardware platform: ARM + custom RISC-V processor

– Software in Jif programming language

– Migrate to the Skynet autonomous driving vehicle in the future

• Develop collision avoidance algorithms to handle 

untrusted inputs such as detailed maps, traffic info, etc.
– Strategy (1): sensor verification of map; preload key known 

landmarks; verify landmarks while driving

– Strategy (2): verification of plan via sensors; develop plan with 

untrusted map; build occupancy map via sensor data only in front 

of car; verify plan will not cause collision   

– Strategy (3): contingency planning; develop nominal plan with 

untrusted map; develop a family of plans based on the potential of 

untrusted data; optimize plan switching logic to provide collision 

guarantees; utilize multiple sensors

• Probabilistic collision analysis of the integrated system
– Quantitative analysis of the safety–collision probability

– Investigate the tradeoff between collision probability and security 

protection levels (timing guarantees, amount of information, size of 

TCB, etc.)

MapData{U} map;
Location{T} destination;
Route{U} naviplan;
Path{T} pathplan;

// compute the navigation route using map
naviplan.genRoute(map, destination);

Waypoint{U} w = naviplan.nextWaypoint();

// check and endorse next step to high
// integrity if it checks out vs. sensor data
endorse(w, L to H) if (verifiedStep(w)) {

// generate a trusted vehicle path
pathplan.genPath(w, ...);

}

• Real-world attack example on Jeep [Miller & Valasek 2015]

– Head unit runs mainly on OMAP chip

– OMAP communicates w/ v850 chip for remote door unlock, etc.

• Vulnerability: software updates including v850 

software are unsigned & performed via head unit

• IFC solution: ensures integrity of software updates 

(e.g., explicit endorsement after verifying signatures)

Information Flow Control Example
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⇒ Full stack of hardware + software satisfies strong 

information flow security properties

always @ (posedge clock) begin

if (write_enable) begin

case(way)

0: tag0[index] = tag_in;

1: tag1[index] = tag_in;

endcase

end

end
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class Map[T,U] where T ⊑ U {
Grid{U} unverif;
Grid{T} verif;

}

void verify(map, sensor) {
if (canVerify(map, sensor))
map.verif =
endorse(map.unverif);

else map.verif = null;
}

Plan{T} plan(start, goal, map) {
// If map unverified, use contingency.
Grid grid = map.verif;
if (grid == null)
return contingency(start, goal);

// Do A*.
return astar(start, goal, grid);

}
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