THE LEAKY ACTUATOR: A PROVABLY-COVERT CHANNEL IN CYBER PHYSICAL SYSTEMS

Amir Herzberg amir.herzberg@uconn.edu University of Connecticut Storrs, USA

Yehonatan Kfir yehonatank@gmail.com Bar-Ilan University Ramat-Gan, Israel

ACM Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC), 2019

INTRODUCTION

Cyber Physical Systems (CPS) - Smart systems that include networks of physical and computational components, all aimed to governed a physical process.

Examples: Nuclear Plants, Power Generations, Water Plant, Transportations.

Critical for our lifeBuilt from large number of devices:

Sensors, Actuators, Controllers...

INTRODUCTION

Devices are chosen based on sufficient specification and lowest cost.

INTRODUCTION

Devices are chosen based on sufficient specification and lowest cost.

Supply Chain Attack: Attacker can offer a malicious device with sufficient quality.

Attacker Goal: To cause damage, by deploying its own malicious device.

ATTACKER CHALLENGE - 1

In order to cause damage, multiple devices should co-operate.

ATTACKER CHALLENGE

^IHow to communicate **between** malicious devices?

Feedback control loops are the main method used to stabilize physical values in CPS.Threshold-controller

^IActuator with two possible commands to increase / decrease the physical value: U_{INC} / U_{DEC} ITwo thresholds: T_{high} , T_{low}

Feedback control loops are the main method used to stabilize physical values in CPS.Threshold-controller

^IActuator with two possible commands to increase / decrease the physical value: U_{INC} / U_{DEC} ITwo thresholds: T_{high} , T_{low}

Feedback control loops are the main method used to stabilize physical values in CPS.Threshold-controller

^IActuator with two possible commands to increase / decrease the physical value: U_{INC} / U_{DEC} ITwo thresholds: T_{high} , T_{low}

Feedback control loops are the main method used to stabilize physical values in CPS.Threshold-controller

^IActuator with two possible commands to increase / decrease the physical value: U_{INC} / U_{DEC} ITwo thresholds: T_{high} , T_{low}

Widebyussedim: phase controller, currentinnetephpHoronaliellers.

Periodia Physicad Process

The process value continuously iterates and bassita entersholds: The bassita entersholds: The actuator's simput, changes between and operiodically. We depate the iter transition of the actuator's output by. i.

LEAKY-ACTUATOR COMMUNICATION METHOD

Dpponeeebinggacommaadd the actigator chargestitatoutputnstatesver with some,

Actatatorios' schedatory influences shther presses si ovhiam is in opeitore they the sensor.

Attackee will luse the delay for signaling:

Easts / Stownessponse times, can signal bits /0/.1.

LEAKY-ACTUATOR COMMUNICATION METHOD

Upponeeebinggacommaadd the actuator chaegestitatoutputhstatesvou with some,

Actuatorios' scheetary influences shther presses si avhiam is in ore it or etheys the sensor.

Attackeerwilliuse the delay for signaling:

Easts / Stownessponse times, can signal bits /0/.1.

Uses a classifier, based on 8 measurable features of the process.

THE RECEIVER

The receiver measures a set of physical properties of the physical value z_k .

^{\square}Properties calculated over a set of $\{z_k\}$:

^IStarting at the first z_k that pass one of the thresholds T_{high} , T_{low} .

^IEnds on the next threshold.

Property	Description
Last Threshold Passed	The last threshold passed by the physical process. The values of this feature can
	be T_{high} or T_{low} .
Set Size	The number of samples in the set of z_k .
Max z	The maximal value of z_k in the set.
Min z	The minimal value of z_k in the set.
Linear Approximation	The linear approximation of z_k in the set. Formally, there are three coefficients
Coefficients	in this feature. Two coefficients $A_{1,0}, A_{1,1}$ represent the approximated function
	$A_{1,1} \cdot x + A_{1,0}$ of the values z_k , and a third coefficient err_1 represents the least-
	mean-square error of the approximated function.
2 nd -order Polynomial	The second order approximation of z_k in the set. Formally, there are four coeffi-
Approximation Coeffi-	cients in this feature. Three coefficients $A_{2,0}$, $A_{2,1}$, $A_{2,2}$ represent the approximated
cients	function $A_{2,2} \cdot x^2 + A_{2,1} \cdot x + A_{2,0}$ of the values z_k , and a fourth coefficient err_2
	represents the least-mean-square error of the approximated function.

Table 1: Features used by the covert receiver classifier

ATTACKER CHALLENGES

^IHow to communicate **between** malicious devices?

ATTACKER CHALLENGE - 2

¹A lot of works on anomalies detections in CPS.

^ICommunication Network Anomalies

^IKleinmann, Amit, and Avishai Wool. "Accurate modeling of the siemens s7 scada protocol for intrusion detection and digital forensics.", 2014.

^IPhysical Anomalies – malicious sensor reporting / malfunctioning actuator

^IUrbina, David I., et al. "Limiting the impact of stealthy attacks on industrial control systems.", 2016.

COVERT CHANNELS

^ICommunication channel are critical for operating malwares.

""Covert" - using some "unmonitorred" channels

^IEncoding information using light brightness ("Extended functionality attacks on IoT devices: The case of smart lights", Shamir et. al. 2016)

^IPacket headers ("Embedding Covert Channels into TCP/IP", Murdoch et. al., 2005)

^IAcoustic emissions of a motor ("Process-aware covert channels using physical instru-mentation in cyber-physical systems", Krishnamurthy et. al. 2018)

LimitlessLED 3 low brightness commands 20KHz sample rate

1000000

Time [microseconds] (a) Low brightness - 3 commands

1500000

^IAnd more...

^I Monitoring the '	" <u>unmonitorred</u> " property, reveals the communication
channel.	Eyal Ronen and Adi Shamir. Extended functionality attacks on IoT devices: The case of smart lights. In2016 IEEE European Symposium on Security and Privacy(EuroS&P), pages 3–12. IEEE, 2016

PROVABLE COVERT CHANNELS

""Provable-Covert" -

^INo secret property

^IProving that it is impossible to detect the channel (under well defined assumptions)

$$Pr(D(\ref{D}) = Mal.) \approx Pr(D(\ref{D}) = Mal.)$$

^IProvable channels were presented in the past, for IP networks:

^ILiu, Yali, et al. "Robust and undetectable steganographic timing channels for iid traffic.", 2010.

¹How to (provably) avoid detection?

LEAKY-ACTUATOR COVERT CHANNEL

^IThe provably-covert channel is based on **two basic observations** about actuators:

^IThe **response time is random,** derived from some (known) distribution.

[®]There are different **benign** types of actuators in the market:

^ILow response time ('fast / high quality actuators')

^ILong response time ('slow actuators').

LEAKY-ACTUATOR COVERT CHANNEL

Leaky actuator issusing an internal fast actuator.

Itiaddslacpseudo-randomdelely, yr from two polsteble idglakt distributions of and P1

THE LEAKY ACTUATOR DESIGN

DeBRYeyediallits devices with a secret, key (0,1)¹
M Modessage served
M Modessage served
M Modessage
i fransansitions spunter

THE LEAKY ACTUATOR: BIT GENERATOR

Pseudacrandam Bitt Generator

Imports: The massage Mither key and the transition index i.

Message Menoded with the moore one tition code to onm.

Decreases bititerror-rate.

Eirst I partites are all O-will be used for a bibrating the seosor.

The Pseudo random bit generator ensures that the delays is

Indistinguishableform and an flation RR for persity espenders

$$Pr(D(\textcircled{O}) = Mal.) \approx Pr(D(\textcircled{O}) = Mal.)$$

THE RECEIVER

Synchronization Assauption (related the bapaper) $\pm i^T \equiv i^R$

The Goal: To identify when the delay is derived from P_0 and when from P_1 .

Detector $b_i \xrightarrow{P_{b_i}} > Concluded b_i \xrightarrow{P_i} > m_i^R = b_i \oplus PRF_{\kappa}(i)$

The Challenge:

Theodelandsumknown impact on the physical process.

ารโละ รอในสี่เวอก่างประสาทคอยู่มีคระมีออกคอย่อยปังชาตาลเกอะโยละมีมีศายา.

 $\mathbb{P}_{\mathbf{h}} = 0 \oplus PRF_{\kappa}(i) \longrightarrow \mathbb{P}_{\mathbf{h}} = 0 \oplus PRF_{\kappa}(i) \longrightarrow \mathbb{P}_{\mathbf{h}}$

Different delays present different impact on the physical process.
Measure features of the physical process. Label them with the (known) calculated P_{bi}
After calibration period, use the trained classifier to "guess" whether the delay was derived them P₀ or P₁.

EVALUATION

^IHow good is the receiver in intercepting the leaky-actuator bits?

Theoretical: Channel Capacity.

Practical: Bit-error-rate of our receiver design.

EVALUATION: CHANNEL CAPACITY

Commel Capacity-highestinitoformationarationationatestablebacateved.

Evaluated two classifiers: KKINN and Decision Teeptpt)

Different message length mendicalibrations periods deacal

Results: About 0.5 5 bit is rafin to formiation avery its and it ion.

<i>m</i> = 10,000				<i>m</i> = 50,000				m = 100,000				
Classifier	$\frac{I^{CAL}}{ m }$	p	С	Classifier	$\frac{I^{CAL}}{ m }$	p	С	Classifier	$\frac{I^{CAL}}{ m }$	p	С	
	0.1%	0.28	0.15		0.1%	0.12	0.46		0.1%	0.154	0.38	
	0.5%	0.12	0.47		0.5%	0.12	0.46		0.5%	0.13	0.44	
kNN	1%	0.12	0.47	kNN	1%	0.129	0.45	kNN	1%	0.129	0.45	
	5%	0.11	0.49		5%	0.11	0.48		5%	0.128	0.45	
	10%	0.11	0.49		10%	0.11	0.49		10%	0.128	0.45	
	0.1%	0.2	0.26		0.1%	0.13	0.43		0.1%	0.154	0.38	
	0.5%	0.13	0.44		0.5%	0.11	0.48		0.5%	0.13	0.44	
DT	1%	0.12	0.47	DT	1%	0.11	0.49	DT	1%	0.126	0.45	
	5%	0.11	0.49		5%	0.1	0.5		5%	0.126	0.45	
	10%	0.11	0.49		10%	0.1	0.5		10%	0.126	0.45	

EVALUATION

Channel Capacity - 0.5 bit per transition.

Bit-Error-Rate (BER) – fraction of errors in the bits decoding.

Expansion ECC – Less than **0.1 bit per transition**.

Reed-Muller ECC – Better results! ~0.13 bit per transition.

"We need better error-correction-codes for this channel [Future Work].

Figure 8: Comparison between repetition code and Reed-Muller codes, for different expansion ratio, with 100,000 bits averaged over 1,000 executions. The calibration period is 1% of the transitions and the classifier is Decision Tree.

SUMMARY AND DISCUSSION

^IChoosing devices based on **specification** and **price** enables **provable** covert attacks.

^IAs for as we know – this is the first **provable** covert channel in CPS.

^IRequires to improve defenses:

¹Adding randomness to the channel (e.g. in the controller logic)

^DPurchasing devices from different vendors.

^IMonitoring power consumption of devices.

In future works:

Complimentary channel from the **sensor to the actuator** ("Chatty-Sensor"). Extending the attack to additional control logics and physical processes.

QUESTIONS?