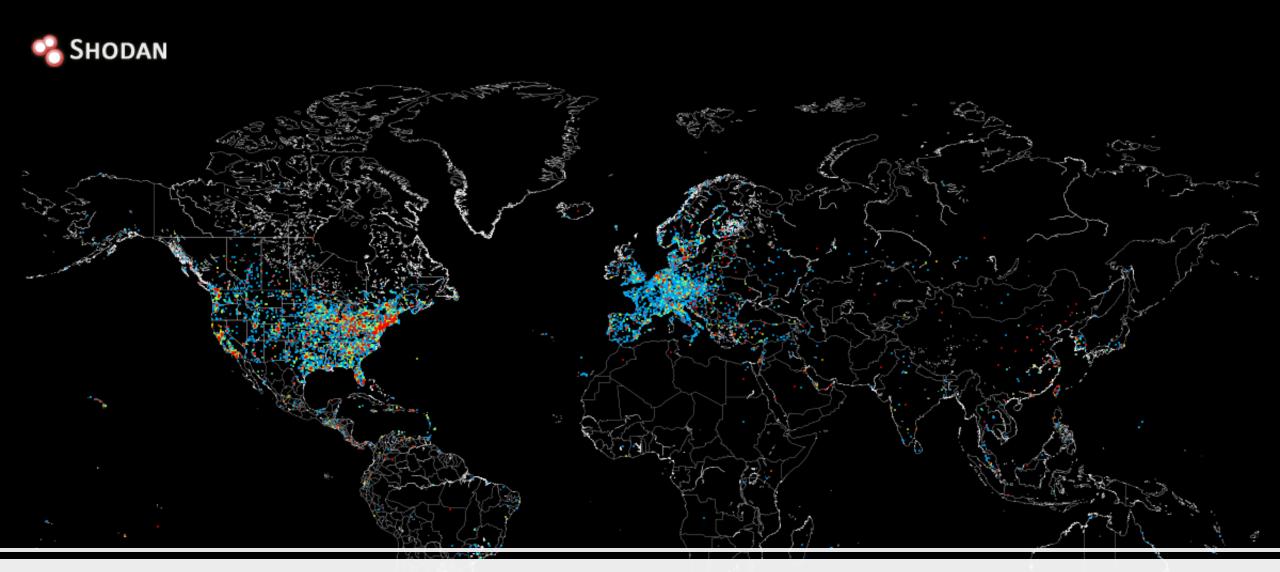
Characterizing Background Noise in ICS Traffic Through a Set of Low Interaction Honeypots

Pietro Ferretti, **Marcello Pogliani**, Stefano Zanero Politecnico di Milano

CPS-SPC, London, 11 November 2019



Industrial Control Systems

Systems, devices, networks and controls used to operate and/or automate industrial processes

ICS on the Internet

What happens when you put a host with SSH enabled and a weak password on the Internet?

What happens when you put a ICS protocol (say, Modbus w/o auth) on the Internet?

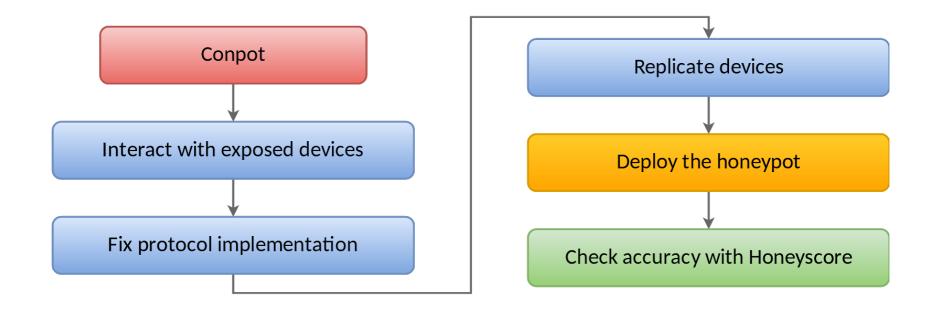
ICS are on the Internet

ICS on the Internet may be targeted by malicious actors

Who is targeting exposed ICS?
How do these actors interact with them?

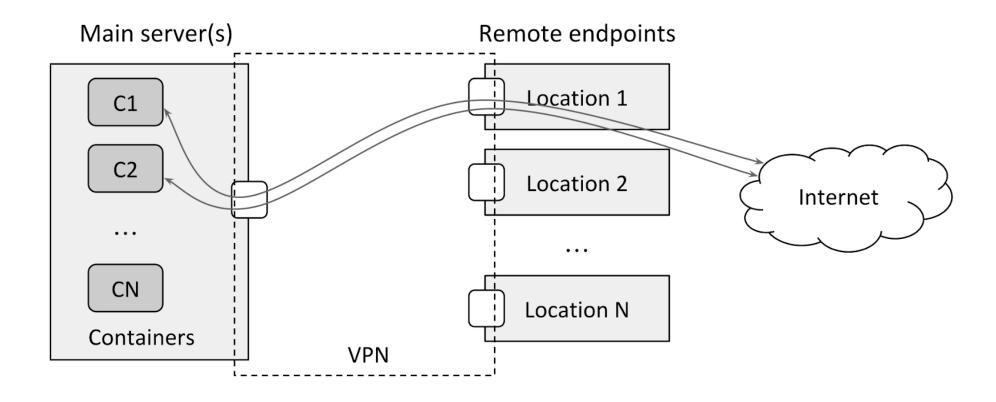
- Two different levels
 - Targeted traffic sophisticated attacks
 - Untargeted traffic "background noise" <----- our focus
- Prior work:
 - network telescopes \ traffic sniffing (network vantage points) \ honeypots

Limits of prior work

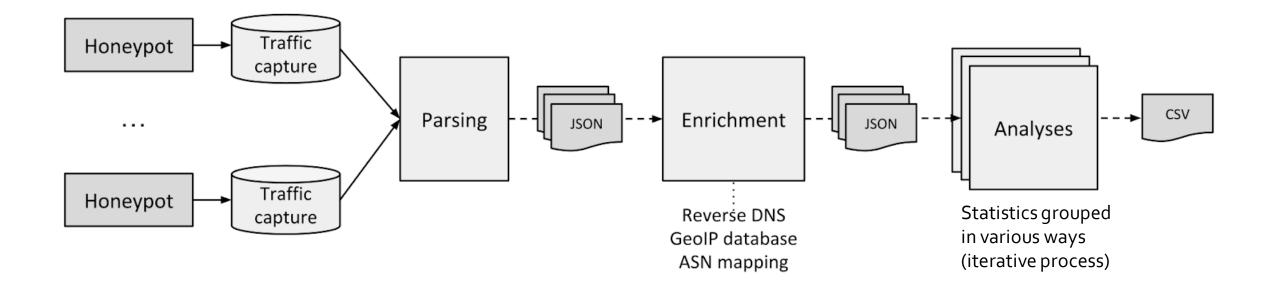

- Network telescopes are limited to attempted connections
- Easy-to-recognize honeypots
- Deployed very few honeypots
- Superficial analysis (traffic statistics only)

Our proposal:

- Hard-to-fingerprint honeypots
- Many network vantage points
- Comprehensive analysis of the actors



Conpot-based ICS Honeypots



Deployment Architecture

Analysis Pipeline

Deployment

- We exposed 35 Honyepot instances
 - (limit of our analysis system is more scalable)
- Research network (our institution)
- Cloud services (GCP: US and Asia region)

Implemented Protocols

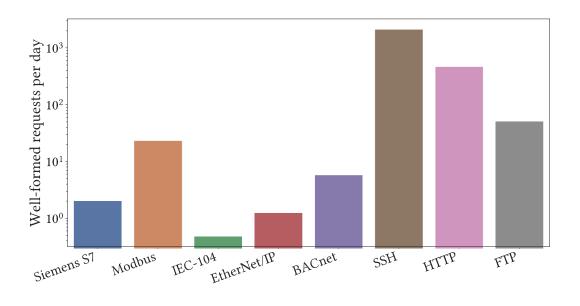
Process automation

- Siemens S7 (2 templates)
- Modbus (2 templates)
- EhterNet/IP (3 templates)

Power grid

• IEC-104

Building automation systems


BACNet

Results (~ 4 months) – quick summary

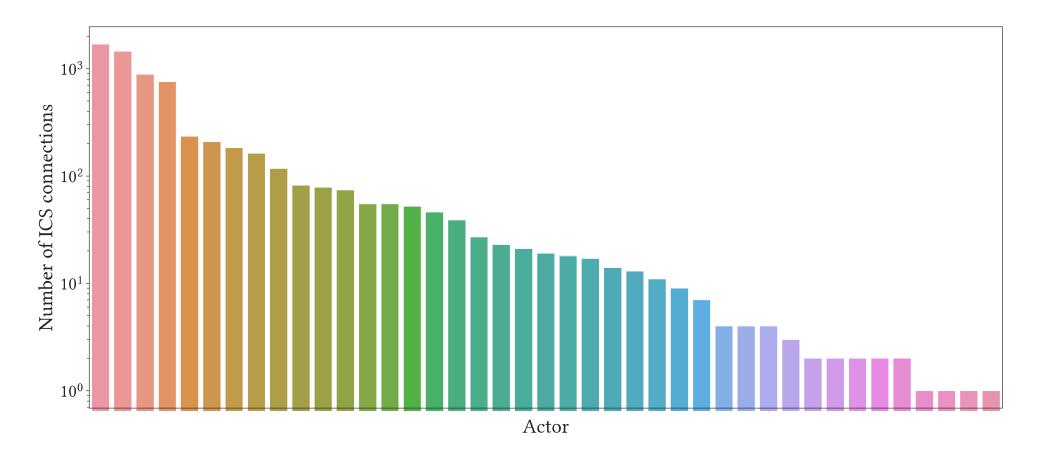
- ICS protocol traffic has increased w.r.t. previous measurements
- Great majority of interaction ~= (nmap) scans

	Siemens sz	Nodbus	EC. 104	EtherNey	BAGRE
Baseline SYN, UDP	1.84	2.28	0.71	2.02	1.73
Baseline inter.	1.58	1.64	0.63	1.99	1.35
SYN and UDP	7.58	33.22	3.01	3.62	9.22
Interactions	2.36	2.00	0.79	1.92	1.43
WF requests	2.42	27.95	0.83	1.12	8.95
WF interactions	0.66	1.24	0.33	0.99	1.40
Mirian et al. [12]	1.98	1.40	_	_	0.37

Results - Actors

- 1469 Ip addresses 832 (57%) at least a well-formed request
- 97 distinct actors (DNS PTR or ASN or webpage)
 - 44 did make ICS-specific requests
 - 23 Siemens S7
 - 28 Modbus
 - 14 IEC-104
 - 20 EtherNet/IP
 - 21 BACNet
 - 7 every supported protocol
- Beijing University of Telecommunication: only Sycomm

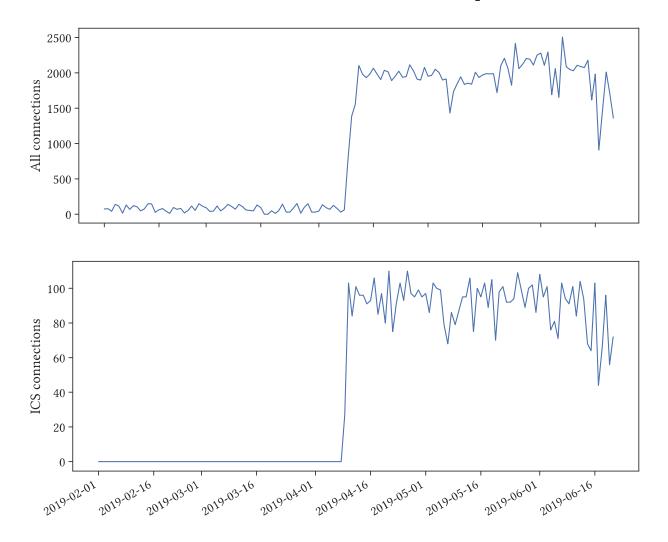
Actors – Public Scanners


Name	Autonomous System	Scanned Protocols
Alphastrike	AS25504	BACNet, EtherNet/IP, S7, Modbus
Beijing University of Telecommunications	AS4538	S7
Binaryedge	AS14061, AS63949	EtherNet/IP, S7, Modbus
Censys	AS237	BACNet, S7, Modbus
F-Secure (Inverse Path)	AS42708	S7
Kudelski Security	AS42570	BACNet, Modbus
Net Systems Research	AS36351, 50562, 60781	BACNet, EtherNet/IP, Modbus
Onyphe	AS12876, 16276, 63949	Modbus
Rapid7 (Project Sonar)	AS10439, 13213, 29302	BACNet
Shodan	AS10439, 174, 29073, 32475, 50613, 9009	BACNet, EtherNet/IP, S7, Modbus, IEC-104
Stretchoid	AS14061	S7, Modbus

Actors – Distribution

Most traffic is from a few regular scanners

- 83% ICS connections made by four actors (Net Systems Research, Blackhost, Shodan, Censys)
- 92% top 10 actors
- Public scanners are periodic (weekly/monthly)



Actors – Non-public scanners

- 60% connections: Blackhost (US bulletproof)
- Non-cloud-sourced connections:
 - 89% China
 - 5% Vietnam
 - 3% US

Campaigns over time: Example - Blackhost

Requests received (harmless!)

Name	Requests	Description	
Siemens S7			
Setup Communication	40.4%	Starts a new connection	
Read SZL / Module Id.	34.8%	Basic module information	
Read SZL / Component Id.	23.3%	Component information	
Read SZL / Read All	1.9%	All available system information	
Modbus			
Read Device Identification	51.5%	Requests vendor and model name, revision number	
Report Slave Id	48.0%	Type, state, identification of one of the devices connected to the PLC	
Unity	0.5%	Schneider Electric-specific request	
IEC-104			
TESTFR	41.4%	Checks if the host is active	
STARTDT	32.4%	Enables data transfer	
C_IC_NA_1	26.1%	General Interrogation Command (returns the	
		current sensor readings)	
EtherNet/IP			
Request Session	0.4%	Requests a session token (optional) (Alphastrike)	
List Identity	99.6%	Basic information, e.g., vendor ID, device type, model, serial number	
BACNet			
Read Property	96.0%	Asks for a specific device property, e.g, device name, model name, location	
Read Property Multiple	4.0%	Batched version of Read Property	

Interesting Requests (reconnaissance?)

Modbus

Read Holding Registers

4 times

Source: AWS

10 x read holding register (slave units 0 to 9) to read the PLC internal state

Response: "illegal data access"

EtherNet/IP

Identity / Get Attribute All

2 times

Source: Hosting serv. (M247 LTD)

Addresses: 1 to 16

Request standard device info

Interesting Requests (cont'd)

SIEMENS S7

This time, requests to write data to memory or check the security status of the device

1 x read var @ address oxo (Tor exit node)

1 x read and write var (AS4134 China Telecom)

1 x SZL 0x232 communication status data (China Unicom)

Interesting Requests – S7 – Details

Read and write variable

- Three "read var" requests
 - read 2 bytes at address M100
 - read 1 bit at address M100
 - read 1 byte at address M100
- One "write var" request
 - write o at address M100, bit 1
- Again, the three "read var"

Communication status data

- Three requests for the System
 Status List (SZL) address 0x232
 (a) index 4
 - CPU protection level
 - operator control settings
 - version ID/checksums

Scanning scripts

Most requests very similar except some parameters (context)
We can attempt to classify scripts according to such parameters

Value	Actors			
Modbus: transaction ID identification number for a Modbus request; usually ignored				
0 (used by Nmap)	ABCDE Group, AS Data, Binaryedge, Capitalonline, China Telecom (AS4134), China Hangzhou Alibaba,			
	China Sichuan, DCS Pacific Star, Dahai Network, Kudelski Security, Shodan, Tamatiya, Vietnam CHT			
1	China Telecom Chengdu			
4919 (i.e., 0x1337)	Alphastrike, Blackhost, Censys, NetSystemsReseatch, Onyphe, Softlayer, Stretchoid, Vultr			
23111	World Hosting Farm			
random value	China Ucloud Shangai			
IEC-104: QOI used in the IEC-104 General Interrogation Command to further specify the type of sensors to read from; usually ignored.				
0	Capitalonline, Shodan, Vietnam CHT, World Hosting Farm			
20 (used by Nmap)	Baidu Netcom, China Hangzhou Alibaba, China Sichuan, China Ucloud Shangai, EHOSTIDC			
EtherNet/IP: context works as an identification number for the EtherNet/IP request				
0	Alphastrike, Blackhost, NetSystemsResearch, Softlayer			
0xc1debed1 (used by Nmap)	Baidu Netcom, Binaryedge, China Telecom (AS4134), China Sichuan, China Ucloud Shangai, China Wenzhou,			
	Velia, World Hosting Farm			
0x6a0ebe64	Shodan, Vietnam CHT			

Concluding Remarks

ICS scanning is dominated by "centralized" research-oriented scans, rather than malicious actors and botnet-sourced traffic

Most "background noise" traffic are harmless requests for information, matching standard scanning scripts like nmap

We found no instances of *definitely* harmful behavior, and only a few instances of potentially harmful behavior or reconnaissance activities

Limitations and future work

Deployment: more vantage points & study differences

Protocols: support for further and/or proprietary protocols

Low interaction ~> high interaction

Study more complex attacks (it is a different problem, though)

Thanks!

Questions?

marcello.pogliani@polimi.it @mapogli

